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ABSTRACT
In this paper, we propose a novel unsupervised dimensionality
reduction (DR) method called orthogonal self-guided similar-
ity preserving projections (OSSPP), which seamlessly inte-
grates the procedures of an adjacency graph learning and DR
into a one step. Specifically, OSSPP projects the data into a
low-dimensional subspace and simultaneously performs sim-
ilarity preserving learning by using the similarity preserving
regularization term in which the reconstruction coefficients of
the projected data are used to encode the similarity structure
information. An interesting finding is that the problem to de-
termine the reconstruction coefficients can be converted into
a weighted non-negative sparse coding problem without any
explicit sparsity constraint. Thus the projections obtained by
OSSPP contain natural discriminating information. Experi-
mental results demonstrate that OSSPP outperforms state-of-
the-art methods in DR.

Index Terms— similarity preserving , dimensionality re-
duction, sparse coding

1. INTRODUCTION

Vision data such as face images, video frames and web doc-
uments are often high-dimensional. The high dimensionality
of data not only increases the computation cost and memory
requirements, but also adversely affects algorithmic perfor-
mance [1]. It is therefore necessary to transform the orig-
inal high-dimensional data into lower dimensional but more
informative subspace [2]. In the literature, many dimension-
ality reduction (DR) methods have been proposed for such
purpose, such as principle component analysis (PCA) [3] [4],
Laplacian eigenmap (LE) [5], locality preserving projections
(LPP) [6], local learning projections (LLP) [7] and linear dis-
criminant analysis (LDA) [8]. Yan et al. further reformulated
some dimensionality reduction methods, including unsuper-
vised and supervised methods into a unified graph embedding
framework [9].

Graph based learning methods attract special attention
owing to its computation efficiency and excellent clustering
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capability [10] [11] [12]. Graph has been successfully applied
in characterizing pairwise data relationship and manifold ex-
ploration. A number of graph construction methods have
been proposed, including ℓ1 graph [13], sparse probability
graph (SPG) [14] and low-rank representation graph (LRR
graph) [15]. Although these methods obtain empirical suc-
cess, there are still some disadvantages. For example, almost
all these methods construct the graph structure on the original
high-dimensional features space, which is unnecessary to be
best for characterizing the pairwise data relationship due to
the fact that some unfavorable features may exist in the orig-
inal data. This drawback can greatly reduce the performance
of the designed algorithms. Intuitively, DR can address this
problem since DR may remove the unfavorable features.

Inspired by above insights, we propose a novel orthog-
onal self-guided similarity preserving projections (OSSPP)
method, in which the DR and the similarity matrix learning
are simultaneously conducted so that the similarity matrix
is constructed on the derived optimal low-dimensional sub-
space. Specifically, the similarity structure information of the
data is encoded by the reconstruction coefficients of the pro-
jected data, and the projected data are required to respect the
similarity structure by the similarity preserving regularization
term. Thus OSSPP provides us an method for DR by the
learned projections. OSSPP is the first work which uses the
reconstruction coefficients of the projected data to encode the
similarity structure information of data, and at the same time
the projected data are required to respect the similarity struc-
ture during the procedure of DR. Although OSSPP is an un-
supervised dimensionality reduction method, the projections
learned by OSSPP contain natural discriminating information
since the problem to determine the reconstruction coefficients
can be converted into a weighted non-negative sparse coding
problem without any explicit sparsity constraint.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the details of OSSPP for dimensionality re-
duction. Experimental results are presented in Section 3. Fi-
nally, Section 4 concludes our paper.



2. ORTHOGONAL SELF-GUIDED SIMILARITY
PRESERVING PROJECTIONS

2.1. Motivation of Our Method

Unlike previous DR methods which firstly encode the simi-
larity structure information of data as the graph relationship
and then enforce the projected data to respect the graph
structure, OSSPP uses the reconstruction coefficients of the
projected data to encode the similarity structure information
and simultaneously requires the projected data to respect the
similarity structure during the procedure of DR. Moreover,
the graph based learning methods empirically formulate the
graph structure on the original high-dimensional features s-
pace, which can greatly reduce the performance of designed
algorithm due to some unfavorable features. However, the
performance of designed algorithm can be improved by em-
ploying DR on account of removing some unfavorable and
redundant features. Therefore, it is necessary to integrate the
DR and graph construction into a unified framework to learn
an optimal projections.

2.2. Orthogonal Self-guided Similarity Preserving Pro-
jections (OSSPP)

In this subsection, we introduce our orthogonal self-guided
similarity preserving projections (OSSPP) method which can
be used to perform DR. Assume that X = [x1, x2, ..., xn] ∈
ℜm×n be a collection of n training samples {xi ∈ ℜm}ni=1

and each sample xi can be well represented by a linear com-
bination of the samples from the same class as xi in X . That
is,

xi = Xzi, zii = 0, ∥zi∥0 ≤ dℓ (1)

which can be rewritten as

min∥Z∥1, s.t. X = XZ, diag(Z) = 0 (2)

where ∥ • ∥1 is the ℓ1-norm regularization, zi is the recon-
struction coefficient vector and Z = [z1, z2, . . . , zn].

Let P ∈ ℜt×m be a projection matrix that projects the
training samples from the original high-dimensional feature
space ℜm into an output space of dimensionality t. Based on
the above insights in 2.1, we propose the following objective
function for OSSPP.

[P ∗, Z∗] = min
P,Z

z(P,Z) (3)

s.t. PTP = I, diag(Z) = 0, Z ≥ 0, ∀i

where

z(P,Z) = ∥PTX − PTXZ∥2F + α∥X − PPTX∥2F

+β

n∑
i=1

n∑
j=1

∥PTxi − PTxj∥2Zij .

where the reconstruction coefficient matrix Z is required to be
non-negative so that it can be directly used as graph weights
and the column of the projections P is required to be orthogo-
nal, which can prevent the solution from becoming degenerate
and lead to a computationally efficient scheme for optimiza-
tion [16]. The goal of the first term of z is to insure the recon-
struction of data in the reduced space. The second term is a
PCA-like regularization term, which ensures that the projec-
tions can hold the main energy of data. The last term in func-
tion z is the similarity preserving regularization term which
aims to require the projected data to respect the similarity
structure during the procedure of DR. α and β are the tradeoff
parameters. In addition, although we do not explicitly impose
the sparsity constraint on the reconstruction coefficients, the
problem to determine the reconstruction coefficients matrix is
naturally converted to a weighted non-negative sparse coding
problem. In this way, OSSPP allows the reconstruction coef-
ficients matrix to have sparsity and neighborhood adaptive.

2.3. Optimization

In this section, we propose an iterative update rule to solve the
problem (3) of OSSPP. Specifically, the first step of the opti-
mization algorithm is to solve P by fixing Z and the second
step is to solve Z by fixing P .

Solve P by fixing Z: If variables Z is fixed, the optimiza-
tion problem defined in (3) is written as

P ∗ = argmin
P

∥PTX − PTXZ∥2F

+α∥X − PPTX∥2F + βTr(PTXLXTP )
(4)

s.t. PTP = I

where L = D − Z is graph Laplacian, in which D is a diag-
onal matrix with Djj =

∑
k Zjk. Tr(·) is the trace operation

of matrix.
Considering the constraint PTP = I , (4) can be further

transformed into

P ∗ = argmin
P

Tr(PT (X −XZ)(X −XZ)TP )

+αTr(XTX − PTXXTP ) + βTr(PTXLXTP )
(5)

which can be written as

P ∗ = argmin
P

Tr(PT (M − αXXT + βXLXT )P ) (6)

s.t. PTP = I

where M = (X −XZ)(X −XZ)T . The solution of (6) can
be obtained by solving the minimum eigenvalues problem:

(M − αXXT + βXLXT )pi = λpi (7)

Let P = [p1, ..., pd] be the solution of (7). These col-
umn vectors pis (i = 1, ..., d) correspond to the eigenvectors
associated with the smallest d eigenvalues.



Solve Z by fixing P : If variables P is fixed, the optimiza-
tion problem defined in (3) is written as

min
Z

∥PTX − PTXZ∥2F + β
n∑

i=1

n∑
j=1

∥PTxi − PTxj∥2Zij

(8)

s.t. diag(Z) = 0, Z ≥ 0

which can be rewritten as

min
Z

∥H −HZ∥2F + βTr(Θ(R⊙ Z)) (9)

s.t. diag(Z) = 0, Z ≥ 0, ∀i
where H = PTX = [h1, ..., hn] ∈ ℜd×n, Rij = ∥PTxi −
PTxj∥2(R = [r1, ..., rn] ∈ ℜn×n) and Θ ∈ ℜn×n is a ma-
trix with all elements as 1. The optimization problem in (9)
can be decomposed into n independent sub-problems for each
coding coefficient zi(i = 1, ..., n) corresponding to hi(i =
1, ..., n) and each sub-problem is a weighted non-negative s-
parse coding problem:

min
zi

n∑
k

rki z
k
i + β∥hi −Hzi∥2 (10)

s.t. zi ≥ 0, zii = 0, ∀i
where zki and rki are the kth elements of the vectors zi and
ri, respectively. Many algorithms can be used to solve (10),
such as basis pursuit (SP)[17] and fast iterative shrinkage
and thresholding (FISTA)[18]. Here, the alternating direction
method (ADM) [19] [20] is used to solve the optimization
problem (10).

The above two steps are iteratively conducted to obtain the
solution for (3). The overall algorithm of OSSPP is described
in detail in Algorithm 1.

Algorithm 1 : OSSPP

Input: Training samples matrix X; Parameters α, β;
Dimensionality of low-dimensional feature space d;
Initialization: Initializing Z as a similarity matrix by k
nearest neighbor graph;
while not converged do

1. Update P by solving (6)
2. Update Z by solving (9)

end while
Output: Projections P

3. EXPERIMENTS AND ANALYSIS

In this section, we apply OSSPP for dimensionality reduction
along with showing our experimental results. In summary,
let P ∗ be the solution of (3), then we use the obtained P ∗ to
perform the dimensionality reduction.

3.1. Experiment Settings

Four public datasets are selected for our experiments: USPS
digit image data set [21], COIL20 data set and two face image
data sets, i.e. YaleB [22] and CMU PIE (PIE) datasets [23]. In
our experiments, the USPS data set contains 9298 handwrit-
ten digit images with 16×16 pixels. COIL20 data set consists
of images of 20 objects, and each object has 72 images with
32×32 pixels captured from varying angles at intervals of five
degrees. The YaleB dataset has 38 individuals, each subject
has around 64 near frontal images with 32 × 32 pixels under
different illuminations. The images of the PIE data set used
are from the frontal pose (C27) and each subject has around
49 images with 64×64 pixels from varying illuminations and
facial expressions. For the sake of computational efficiency,
PCA is used as a preprocessing step to preserve 98% energy
of data for the USPS data set, and 95% energy of data for the
YaleB, COIL20 and PIE face data sets, respectively.

3.2. Experimental Results on Dimensionality Reduction

Unsupervised dimensionality reduction is a fundamental step
in pattern recognition. In our OSSPP method, the projection
P ∗ is useful for the similarity preserving. After learning P ∗

from the training set, it is straightforward to use P ∗ to map
both of the training samples and test samples into the desired
low-dimensional subspace, and then utilize nearest neighbor
(NN) classifier to predict the labels of test samples. In the ex-
periments, we only use the NN classifier (based on Euclidean
distance) to perform classification due to space limit. For each
data set, we randomly select different training samples from
per subject for training and rest for testing and all experiments
are run 10 times (unless otherwise stated) and then the mean
classification accuracy and standard deviation are reported.

We compare OSSPP with some popular unsupervised
dimensionality reduction methods including PCA, LPP [6],
NPE [24] and sparsity preserving projection (SPP)[25]. Ta-
ble 1 shows that classification results on these data sets, in
which #Tr and d denote the optimal number of training
samples selected from each subject of the data set and the
optimal dimensionality. From Table 1, one can see that PCA
generally gets much worse performance than LPP, NPE, SPP
and OSSPP. Moreover, LPP and NPE generally outperfor-
m PCA with lower dimensionalities. This indicates that by
preserving the local structure of the data, the classification ac-
curacy can be improved. That is, when NN classifier (nearest
neighbor search) is used, local structure seems to be impor-
tant than global structure. In addition, OSSPP consistently
outperforms all the compared methods with NN classifier.
This suggests that the orthogonal projections learned by OS-
SPP contain more discriminating information than those of
the compared methods, which is benefit from the weighted
non-negative sparse coding for the solution of reconstruction
coefficients matrix Z. Furthermore, unlike SPP, we do not
impose explicitly sparsity constraint on the reconstruction



Data set (#Tr) PCA (d) LPP (d) NPE (d) SPP (d) OSSPP (d)
USPS (10) 27.09±1.73 (49) 27.00±1.86 (20) 26.07±2.30 (20) 19.30±1.28 (47) 15.59±1.36 (48)
USPS (20) 21.25±1.78 (46) 19.60±0.71 (26) 17.86±2.05 (20) 13.22±0.78 (39) 10.60±0.67 (47)
USPS (30) 17.95±0.78 (50) 16.13±0.88 (32) 14.27±0.68 (40) 11.27±0.54 (38) 8.76±0.66 (48)
COIL20 (3) 39.70±2.19 (48) - - 22.67±2.07 (20) 20.68±2.77 (83)
COIL20 (5) 33.61±1.69 (48) 38.62±3.96 (24) 40.52±1.93 (35) 15.16±1.83 (30) 15.30±1.96 (30)
COIL20 (7) 28.01±1.78 (44) 25.52±1.82 (37) 24.07±2.19 (54) 12.23±1.45 (58) 11.89±2.06 (28)
YaleB (20) 35.42±1.59 (318) 17.19±0.34 (61) 16.65±0.96 (61) 16.08±0.68 (61) 13.89±1.12 (37)
YaleB (30) 26.75±1.56 (325) 14.44±0.94 (61) 14.21±0.93 (61) 12.51±0.92 (61) 9.59±2.01 (30)
YaleB (40) 21.42±1.14 (450) 13.33±0.81 (61) 12.56±0.89 (61) 11.59±1.08 (61) 8.86±0.95 (30)
PIE (15) 30.52±0.91 (410) 8.32±0.74 (68) 5.83±0.75 (63) 4.91±0.43 (68) 3.06±0.31 (58)
PIE (20) 25.45±1.17 (290) 6.31±0.65 (68) 4.03±0.73 (55) 3.52±0.31 (53) 3.02±0.34 (60)
PIE (25) 22.73±1.07 (280) 4.93±0.59 (68) 3.34±0.52 (60) 3.00±0.46 (68) 2.54±0.42 (60)

Table 1: Classification error rates (mean classification error rates ± standard deviation %) of different algorithms with NN
classifier under different number of training samples. The bold numbers are the lowest error rates.
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Fig. 1: Classification error rates (%) of different algorithms
with NN classifier versus dimensionalities on the (a) YaleB
and (b) PIE face data sets. For the YaleB and PIE data sets,
we randomly select 30 and 20 samples per subject for training
and use the remaining for testing, respectively.

coefficient matrix.
The classification error rates versus dimensionalities on

the YaleB and PIE data sets are shown in Fig. 1. We com-
pare the dimensionalities up to 50 and 70 for the YaleB and
PIE data sets, respectively. Again, OSSPP performs better
than the other methods. We examine the parameter sensitivity
of OSSPP to classification error rate. α is to hold the main
energy of data, while β is to ensure the similarity preserving
on the projections. Fig. 2 shows the parameters sensitivity
and convergence of OSSPP. From Fig. 2 (a), we can see that
the performance of OSSPP is robust to the parameter α when
α ≤ 10−2. OSSPP is not sensitive to the parameter β in the
given wide range (see Fig. 2 (b)). In practice, we first fix α
due to its more stronger robustness than β, and then select the
optimal value of β from the given set. Fig. 2 (c) shows that
the objective function values decreases very fast. After on-
ly about 6-7 iterations, the objective value converges, which
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Fig. 2: Parameters sensitivity and convergence: (a) and (b)
show the performance of OSSPP vs. the parameters α and β,
respectively. (c) shows the convergence curve of OSSPP. We
randomly select 20 images per subject for training and use the
remaining for testing on the YaleB data set.

suggests that our iterative update rule is very effective.

4. CONCLUSION

This paper proposes a novel DR method, called orthogo-
nal self-guided similarity preserving projections (OSSPP)
for DR. The core idea of OSSPP is that OSSPP uses the
reconstruction coefficients of projected data to encode the
similarity structure information and requires the projected
data to respect the similarity structure during the procedure
of DR. Extensive experiments on DR show the effectiveness
of the proposed method.
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